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Here we investigate the propagation and scattering of surface water waves in the presence of arrays of
bottom-mounted cylindrical steps. Both periodic and random arrangements of the steps are considered. The
wave transmission through the arrays is computed using the multiple scattering method based upon a recently
derived formulation. For the periodic case, the results are compared to the band structure calculation. We
demonstrate that complete band gaps can be obtained in such a system. Furthermore, we show that the
randomization of the location of the steps can significantly reduce the transmission of water waves. Compari-
son with other systems is also discussed.
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Phenomena pertinent to waves in complex media have
been and continue to be a great inspiration for scientific ex-
plorations. One of the most important phenomena is fre-
quency band structures. It prevails when waves propagate
through periodically structured media. Such a phenomenon
was first investigated for electrons in solids nearly eighty
years ago. The well-known Bloch theorem has then been
proposed and led to the successful explanation of some im-
portant properties of solids such as conductivity, semicon-
ductivity, and insulating states[1]. Applying these concepts
to classical waves[2,3] has paved an avenue to the new era
of research. Not only the phenomena previously observed or
discussed only for electronic systems are successfully trans-
planted to classical systems, but many more significant and
novel ideas and applications, have well gone beyond expec-
tation, and are so far reaching that a fruitful new field has
been established, i e., the field of photonic and acoustic crys-
tals.

Recently, the consideration of waves in periodic media
has also been deliberately extended to the propagation of
water waves over periodically structured bottoms[4–9].
Some of the advances have been reviewed, for example, by
McIver [10]. One of the most recent pioneering experiments
used surface water waves to illustrate the phenomenon of
Bloch waves as a result of the modulation by periodic bot-
tom structures[7]. This experiment made it possible that
some abstract concept associated with wave phenomena can
be presented in an unprecedentedly clear manner.

Motivated by the experiment described in Ref.[7], in this
paper we would like to further explore the propagation of
water waves through the underwater structures discussed in
the experiment. The structures considered here consist of ar-
rays of cylindrical steps mounted on a flat bottom. There
have been many theoretical approaches for investigating
propagation of water waves over various bottom topogra-
phies, as reviewed in, e.g., Refs.[11–13]. In this paper, we
will use the theory, which was first used in Ref.[14] and later
was derived in Ref.[15]. The main reason lies in that the

theory seems to be useful in explaining the experimental
observations on the situations to be considered here(see Ref.
[14]). In addition, it has been shown that this approach com-
pares favorably with existing approximations when applied
to some special cases considered previously, such as one-step
problems[15]. Furthermore, we also applied the theory to
the experimental results on one-dimensional systems[23],
and recovered the experimental data well; the results will be
published elsewhere.

We will calculate the wave transmission and band struc-
tures for periodically arranged arrays. Then we will show the
effect of positional disorders on the transmission. The results
suggest that the phenomenon of complete band gaps by anal-
ogy with the photonic crystals is also possible for water
waves. The results also suggest that there might be the deaf-
band phenomenon for the water waves.

Before continuing, it is worth noting here that from a
more general perspective, propagation of water waves over
topographical bottoms has been a subject of much research
from both practical and theoretical aspects since Lamb[16].
From the practical side, the topic is essential to many impor-
tant ocean engineering problems such as floating bridges and
devices in offshore power stations[10]. A great amount of
papers and monographs has been published[17–28]. A com-
prehensive reference on the topic can be found in two excel-
lent textbooks[11,12].

We wish to further comment on the theory used in the
present paper. Due to the complexity of the problem, a few
possible effects are not considered in the theory[15,23], in-
cluding such as nonlinearity and evanescent waves. Since the
evanescent waves more likely affect the near field propaga-
tion, and may be ignored in the problem discussed in this
paper. We point out that since there is no exact or rigorous
theory for the situations considered here, certain approxima-
tions must be taken so that the problem can be manageable.
Depending on the nature of questions, different approxima-
tions may be used. A way of verification is to compare with
experimental data. The success in applying the theory to ex-
periments[14] provides a justification of using the theory.
However, we wish to stress that the theory used here is not
exact. It will be next task to compare available theories and
sort out the suitability of these theories for various situations*Corresponding author.
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and explore possible accumulation effects due to evanescent
modes, particularly when the steps[7] are close to each
other.

A conceptual layout of the system considered here is pre-
sented in Fig. 1. The cylindrical steps with radiusa and
heighth−h1 are placed vertically on a bottom. The steps can
be arranged either regularly or randomly. Here the steps form
a square lattice with the lattice constantd. The water surface
is in the x-y plane. We consider how these steps affect the
propagation of the surface waves. This is a two-dimensional
problem. The governing equations for the motion of surface
water waves in the system described by Fig. 1 can be ob-
tained by invoking the Newton’s second law and the conser-
vation of mass by assuming that the water is incompressible.
The formulation has been given in Ref.[14] and the detailed
derivation is given in Ref.[15], here we just list the final
equations.

The displacement of the water surface is denoted by
hsrW ,td. Its Fourier transformation is

hsrW,td =
1

2p
E

−`

`

dve−ivthvsrWd. s1d

The equation of motion for the Fourier componenthv is
derived as[15]

¹S 1

k2 ¹ hvsrWdD + hvsrWd = 0, s2d

where¹W =]xeWx+]yeWy, and the wave numberk satisfies

v2 = gksrWdtanhfksrWdhsrWdg. s3d

For a fixed frequencyv, the wave number varies as a func-
tion of the depthhsrWd.

In this paper we will apply Eq.(2) to case of the cylin-
drical steps depicted in Fig. 1, in line with the experiment
[7]. Furthermore, we assume that all the steps are identical.
When there is a stimulating source, the transmitted waves
will be scattered repeatedly at the steps, forming an orches-
tral pattern of multiple scattering. Such a multiple scattering
process can beexactly solved for any arrangement of the
steps by the multiple scattering theory[29]. The wave trans-
mission can be computed. In the computation, the transmis-
sion is normalized such that it is unity when there are no
scatterers. While the details have been presented in Refs.
[15,30], the essence is summarized as follows. The scattered
waves from each step is a response to the incident waves

which the direct wave from the source and all the scattered
waves from other steps. Then express the scattered waves
from each step in terms of a series of mode expansion. A set
of self-consistent equations is thus obtained, and is solved
exactly by a time consuming method of matrix inversion.

When the steps are regularly placed to form periodic lat-
tices, the frequency bands will appear and can be determined
as follows. By Bloch’s theorem[1], the displacement field
hv can be expressed in the following form:

hvsrWd = eiKW ·rWo
GW

CvsGW ,KW deiGW ·rW, s4d

where GW is the vector in the reciprocal lattice andKW the
Bloch vector[1]. In this case, the wave numberk also varies
periodically and we have the following expression:

1

k2 = o
GW

AvsGW deiGW ·rW. s5d

For a fixedv, the coefficientsAv are determined from Eqs.
(3) and (5).

Substituting Eqs.(4) and (5) into Eq. (2), we get

o
GW 8

QGW ,GW 8sK
W ,vdCvsGW 8,KW d = 0, s6d

with

QGW ,GW 8sK
W ,vd = fsGW + KW d · sGW 8 + KW dgAvsGW − GW 8d − dGW ,GW 8.

The dispersion relation connectingKW and v, i.e., the fre-
quency bands, is therefore determined by the secular equa-
tion

detffsGW + KW d · sGW 8 + KW dgAvsGW − GW 8d − dGW ,GW 8gGW ,GW 8 = 0. s7d

Special care has to be taken in solving the above secular
equation, since the initial dispersion relation in Eq.(3) is
nonlinear. We use an iterative procedure to find the zero
point or the fixed point for the determinant. To gain confi-
dence with the computation, we have applied the numerical
codes to three special cases for which the solution is rela-
tively easy to obtain: a flat bottom, steps in shallow and deep
waters. We found that the results match well the expecta-
tions.

First we consider the case of regular arrays. Figure 2
shows the results for the band structures and the transmission
of water waves across the arrays of cylindrical steps. With
reference to Ref.[7], the following parameters have been
used in the computation: lattice constantd=2.5 mm, cylinder
radius a=0.875 mm, depth of the waterh=2.5 mm. The
heights for the steps are 2.49 and 2.40 mm for(a) and (b),
respectively. In the computation, we have also considered the
capillary effect by modifying Eq. (3) into v2=gks1
+b2k2dtanhskhd, and we set the capillary lengthb as 0.93 mm
in accordance with the experiment[7]. When computing the
transmission, a stimulating source is placed about one lattice
constant away from the arrays whereas the receiver is located
at about half of the lattice constant away on the other side of

FIG. 1. Conceptual layout of the system:(a) side view and(b)
bird’s view. Here the cylindrical steps with heightDh=h−h1 form a
rectangular array with lattice constantd.
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the arrays. To ensure the stability of the results, enough
modes and number of steps have been considered. For in-
stance, the maximum mode number and the maximum array
size considered are 9 and 30310, respectively. These num-
bers are considerably larger than what has been computed
previously for similar problems.

Here it is shown that there is a complete band gap ranging
from 9.6 to 12.3 Hz for the case in(a). The band structure
calculation in (a1) is fully supported by the independent
transmission calculation by the multiple scattering theory.
Along theGX direction, the band structure shows that there
is a partial frequency gap from about 15 to 22 Hz. That is,
waves whose frequencies lie within the range cannot propa-
gate along this direction. This partial gap also appears in the
transmission calculation shown by the solid line in Fig.
2(a2). However, the gap depicted by the transmission calcu-
lation seems much narrower than that obtained by the band
structure calculation. We find that this is due to the finiteness
of the array. Since a point source was used to transmit waves,
waves can be radiated to various direction. Although the
propagation along theGX direction is prohibited in the pres-
ence of the partial gap, the radiation into other directions
may still have the chance to arrive at the receiver, thus com-
plicating the observation of the partial gap.

We also find that the band structures and the transmission
are very sensitive to the arrangement and the height of the
steps. As an example, in Fig. 2(b) we show the results for the
same lattice array as in(a), except that we change the height
of the steps from 2.49 to 2.40 mm. This slight change causes
a dramatic change in band structure. The complete band gap
disappeared. There are two partial gaps located at 20 and
45 Hz, respectively, along theGX direction. Within these two
gaps, the transmission is inhibited, as evidenced by the two
leftward valleys on the solid line in Fig. 2(b2). Compared to
the situation in Fig. 2(a), the transmission data match the
band structures better for the partial gaps.

We notice that there are two inhibited transmission val-
leys along theGM direction from the multiple scattering cal-
culation, referring to the dotted line in Fig. 2(b2). This phe-
nomenon is surprising, since in the frequency range
concerned, roughly from 28 to 35 Hz, two frequency bands
do show up in Fig. 2(b1). A possible explanation for this
ambiguity may be that the two bands are deaf. Such a deaf-
band phenomenon has been recently observed, for example,
in acoustic systems[31] with a further support from theoret-
ical computations[30].

Next we consider the effect of the randomization in the
locations of the steps. For brevity, we only show the result
for the complete random array. That is, the locations of the
cylindrical steps are completely random on thex−y plane.
The only restraints are that no two steps should overlap with
each other, and the averaged distance between two nearest
steps is kept as the same as in the ordered case, i.e.,d
=2.5 mm. The transmission results are shown in Fig. 3. The
solid and dotted lines separately refer to the transmission
results for the propagation along the[10] direction in the
ordered case and for the complete random case. At low fre-
quencies, the disorder effect is not obvious for the given
sample size. In this regime, the scattering by the steps is
week. However, the transmission is significantly reduced in
the mid range of frequency. This observation is in agreement
with the case of acoustic scattering by arrays of rigid cylin-

FIG. 2. Right panel: Normalized transmission lnuTu2 versus fre-
quency for square lattices cylindrical steps with two deferent
heights. Left panel: the calculated band structures for the corre-
sponding lattices. The inserted boxes in(a1) and (b1) denote the
Brillouin zone and illustrates the direction of wave transmission.
For example,GX andGM refer to 10 and 11 directions, respectively.

FIG. 3. Normalized transmission lnuTu2 versus frequency for pe-
riodic and complete random arrays, respectively. In the random
case, the transmission has been averaged over the random
configurations.
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ders located in air[15]. For high frequencies, the reduction
due to the disorder is not as significant. This is understand-
able. In the high frequency range and when the shallow wa-
ter approximation fails, i.e., whenkh. .1, the effect of the
steps on the wave propagation tends to diminish. This can be
seen from Eq.(3) which reduces tov2<gk in the high fre-
quency regime.

We note that randomness or disorders can lead to the phe-
nomenon of wave localization[32]. This phenomenon has
been studied intensively for acoustic waves[33], electromag-
netic waves[34], and water waves[23,24]. The water wave
localization in other situations has been further investigated
recently by a number of groups[28,35]. It was shown that
the localization is observable within a range of frequencies
for given randomness. The present results for water waves
over two dimensional random steps, as shown in Fig. 3, are

in qualitative agreement with the previous observations. In
addition, effects of nonlinearity on localization have also
been studied recently for water waves in other situations
[28].

In summary, we have considered water wave propagation
over bottom-mounted cylindrical steps. We found that com-
plete band gaps can appear in such a system in analogy with
that in the photonic or sonic crystals. The results also suggest
that there might be the deaf-band phenomenon for the water
waves.
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